

Description

The P1495 is an Over-Voltage-Protection (OVP) load switch with adjustable OVLO threshold voltage. The device will switch off internal MOSFET to disconnect IN to OUT to protect load when any of input voltage over the threshold. P1495(A5) has function to clamp the output voltage at 5.4V if input voltage is higher than 5.4V. When the OVLO input set below the external OVLO select voltage, the P1495 automatically chooses the internal fixed OVLO threshold voltage. The over voltage protection threshold voltage can be adjusted with external resistor divider and the OVLO threshold voltage range is 4.5V~15V. The Over temperature protection (OTP) function monitors chip temperature to protect the device.

The P1495 is available in 9-Ball wafer level Chip-Scale-Package. Standard products are Pb-free and Halogen-free.

Over Voltage Protect with Internal OVLO Threshold Setting

Over Voltage Protect with External OVLO Threshold Setting

Figure 2: Pin order (Top view) and Marking (Top view)

Feature

- ≻ Maximum input voltage : 29V
- Switch ON resistance : 32moTyp. ≻
- Ultra fast OVP response time: 50ns Typ. >
- 5.4V fixed over-voltage clamp ≻
- ≻ OVLO set threshold

Reference voltage for adjustable version

- 1.2V : P1495 with \pm 2% accuracy

Application

- Mobile Handsets and Tablets
- Portable Media Players
- Peripherals

Figure 1: Typical Application

P1495A5

Pin Definitions

Pin No.	Symbol	Descriptions		
B3, C2, C3	IN	Switch Input and Device Power Supply.		
A2, A3, B2	OUT	Switch Output to Load.		
C1	OVLO	External OVLO adjustment. Connect a resistor-divider to set different OVLO threshold, V_{OVLO} =1.2x(1+R1/R2) as shown typical application diagram. Connect OVLO to GND when using the internal fixed threshold voltage. R2=120kohm is recommended.		
A1	GND	Ground		

Block Diagram

Figure 3: IC Block Diagram

Absolute maximum rating

Parameter(Note1)	Symbol	Value	Units
Input voltage (IN pin)	V _{IN}	-0.3 ~ 29	V
Output voltage (OUT pin)	V _{OUT}	-0.3 ~ 15	V
Input voltage (OVLO pin)	V _{OVLO}	-0.3 ~ 15	V
Thermal resistance	R _{0JA}	TBD	°C/W
Junction temperature	TJ	150	°C
Lead temperature(10s)	TL	260	°C
Storage temperature	Tstg	-55~150	°C
ESD Datingo	НВМ	±2000	V
ESD Ratings	MM	±500	V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Value	Units
Input voltage	V _{IN}	3.5~28	V
MAX Continuous Output current	I _{OUT}	3	А
Ambient operating temperature	Topr	-40~85	°C

Electrical Characteristics

(T _A =25℃,	V _{IN} =5V,	C _{IN} =1uF,	$C_{OUT}=4.7 \mathrm{uF},$	unless otherwise specified.)
-----------------------	----------------------	-----------------------	----------------------------	------------------------------

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Units
Input voltage range	V _{IN}		3.5		28	V
Quiescent current	Ι _Q	NO Load, OVLO=GND V _{IN} =25V		110		uA
ON resistance	R _{on}	V _{IN} =5V, I _{OUT} =1A		32	45	mΩ
OVP response time	t _{OVP}	V_{IN} rising, $C_{IN}=C_L=0$ pF (Note2)		50		ns
OVLO set threshold	V _{OVLO_TH}			1.2		V
OVP clamped voltage	V _{clamp}			5.4		V
	VOVP_EXTSEL	VIN rising	4.5		15	V
Adjust OVP voltage range	VOVP_INTSEL			7.4		V
External OVLO select voltage	VOVLO_EXTSEL		0.4			V
Internal OVLO select voltage	VOVLO_INTSEL				0.6	V
OVP hysteresis voltage	VOVLO_HYS	VIN falling		0.15		V
UVLO threshold voltage	VUVLO	VIN rising			3.5	V
UVLO hysteresis voltage	VUVLO_HYS	VIN falling		0.25		V
Debounce Time	TDEB	VIN>UVLO to VOUT=VIN*10%		60		ms
Turn On Time	TON	VOUT=VIN*10% to VOUT=VIN*90%		300		us
Output discharge resistance	RDCHG	VIN=5V		700		Ω
OTP threshold temperature	TOTP	VIN=5V		140		°C
OTP hysteresis temperature	THYS	VIN=5V		20		°C

Note 2: Guaranteed by design

Function descriptions

1. Under-voltage Lockout (UVLO)

The under-voltage lockout (UVLO) circuit disables the power switch until the input voltage reaches the UVLO turn on threshold. Built-in hysteresis prevents unwanted on and off cycling because of input voltage droop during turn on.

2. Over-voltage Clamp (OVC)

When 5.4 V < VIN < 7.4 V, the over-voltage-clamp (OVC) circuit clamps the output voltage to 5.4 V. Fast transients can exceed the bandwidth of the internal gate control amplifier but such events will not risk damage to the load. In the unlikely event that a transient is fast enough to exceed the amplifier bandwidth but not severe enough to exceed 7.4 V.

3. Over-voltage Lockout (OVLO)

When VIN exceeds 7.6 V, the over-voltage lockout (OVLO) circuit turns off the protected power switch. The OVP threshold is calculated by the equation: $V_{OVLO}=1.2x(1+R1/R2)$.

P1495A5

P1495A5

Over voltage protector

Typical Characteristics

Fig 1. Start-up waveform

Fig2. OVP response

Fig3. OVP recovery waveform

Fig4. Surge test schematic

Fig5. 8-20 Surge test waveform (400V)

Product dimension (WLCSP-9L)

Dim	Millimeters				
	MIN	Тур.	МАХ		
А	0.475	0.505	0.535		
A1	0.125	0.140	0.155		
A2	0.325	0.340	0.355		
D	1.070	1.100	1.130		
E	1.070	1.100	1.130		
е	0.400 (typ.)				
D1	0.800 (typ.)				
E1	0.800 (typ.)				
ø	0.180 (typ.)				

IMPORTANT NOTICE

Prisemi are registered trademarks of **Prisemi Electronics Co., Ltd** (Prisemi), Prisemi reserves the right to make changes without further notice to any products herein. Prisemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Prisemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in Prisemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Prisemi does not convey any license under its patent rights nor the rights of others. The products listed in this document are designed to be used with ordinary electronic equipment or devices, Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Website: http://www.prisemi.com For additional information, please contact your local Sales Representative. ©Copyright 2009, Prisemi Electronics Prisemi is a registered trademark of Prisemi Electronics. All rights are reserved.