

## ME2816



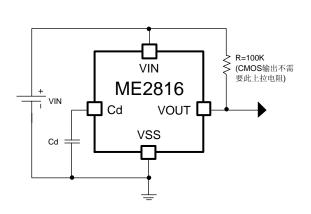
# 延时可调的电压检测系列 ME2816

### 概述

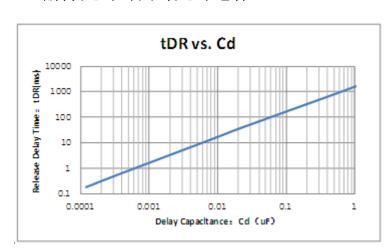
ME2816 是一系列高精度、低消耗电流电压检测器, 内置延时电路,可通过 Cd 端连接电容获得任意解除电压 延时时间。ME2816 采用 N 沟道开漏输出。

#### 特点

- 高精度: ±1%
- 低消耗电流: 0.5uA
- 检测电压: 1.0V~5.0V(步进 0.1V)
- 工作电压: 0.7V~6.0V
- 输出结构: NMOS
- 延时电路: 可调延时时间

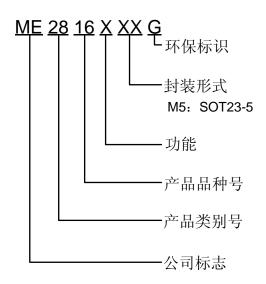

#### 应用场合

- 微处理器复位电路
- 充电电压监测电路
- 电源掉电监测电路
- 记忆后备电池开关电路


### 封装形式

• 5-pin SOT23-5

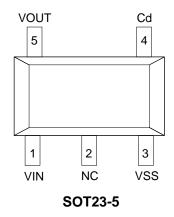
## 典型应用图




## 解除延时时间与延时电容






## 选型指南

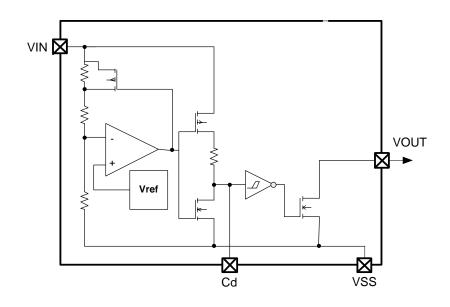


| 产品系列         | 产品描述                    |  |
|--------------|-------------------------|--|
| ME2816A17M5G | VDF=1.7V;封装形式: SOT23-5  |  |
| ME2816A18M5G | VDF=1.8V; 封装形式: SOT23-5 |  |

注: 如您需要其他电压值或者封装形式的产品,请联系我司销售人员。

## 产品脚位图




## 脚位功能说明

| PIN 脚位  | 符号               | 功能说明  |  |
|---------|------------------|-------|--|
| SOT23-5 | 197 <del>5</del> |       |  |
| 1       | VIN              | 电源输入端 |  |
| 2       | NC               | 空脚    |  |
| 3       | VSS              | 地     |  |
| 4       | Cd               | 延时电容端 |  |
| 5       | VOUT             | 电压输出端 |  |

V02 <u>www.microne.com.cn</u> Page 2 of 11



## 芯片功能示意图



模块功能示意图

### 绝对最大额定值

| 参数         |            | 极限值      | 单位           |
|------------|------------|----------|--------------|
| 输入电压VIN    | 输入电压VIN    |          | V            |
| 输出电流IOUT   | 输出电流IOUT   |          | mA           |
| 输出电压VOUT   | 输出电压VOUT   |          | V            |
| 电容延时端 VCD  | 电容延时端 VCD  |          | V            |
| 电容延时端电流ICD | 电容延时端电流ICD |          | mA           |
| 封装功耗PD     | SOT23-5    | 600      | mW           |
| 封装热阻θJA    | SOT23-5    | 210      | °C/W         |
| 工作环境温度Ta   |            | -40~+85  | $^{\circ}$ C |
| 存储温度Tstg   |            | -55~+150 | $^{\circ}$ C |
| 结温TJ       |            | -40~+150 | $^{\circ}$   |

注意: 绝对最大额定值是本产品能够承受的最大物理伤害极限值,请在任何情况下勿超出该额定值。

V02 <u>www.microne.com.cn</u> Page 3 of 11



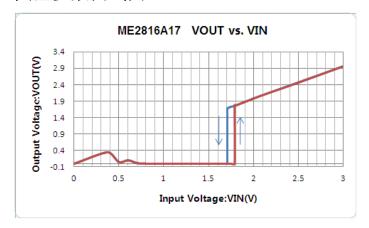
# 电气参数(正常条件 Ta=25℃ 除非另行标注)

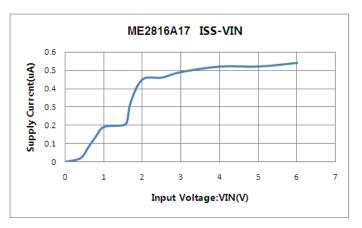
| 参数       | 符号               | 测试条件                          | 最小值         | 典型值      | 最大值         | 单位  |
|----------|------------------|-------------------------------|-------------|----------|-------------|-----|
| 工作电压     | VIN              | VDF(T)=0.8~5.0V (*1)          | 0.7         |          | 6.0         | V   |
| 检测电压     | VDF              | VDF(T)=0.8~1.5V               | VDF(T)*0.98 | VDF(T)   | VDF(T)*1.02 | V   |
|          | VDF              | VDF(T)=1.6~5.0V               | VDF(T)*0.99 | VDF(T)   | VDF(T)*1.01 | V   |
| 迟滯       | VHYS             | VIN=1.0~6.0V                  | VDF×0.02    | VDF×0.05 | VDF×0.08    | V   |
| 工作电流     | ISS              |                               |             | 0.5      | 1.2         | μΑ  |
|          | IOUT1            | VIN=0.7V,<br>DS=0.5V(Nch)     | 0.01        | 0.36     |             | mA  |
| 输出电流 IC  |                  | VIN=1.0V(*2),<br>DS=0.5V(Nch) | 0.1         | 0.7      |             |     |
|          |                  | VIN=2.0V(*3),<br>DS=0.5V(Nch) | 0.8         | 1.6      |             |     |
|          |                  | VIN=3.0V(*4),<br>DS=0.5V(Nch) | 1.2         | 2.0      |             |     |
|          |                  | VIN=4.0V(*5),<br>DS=0.5V(Nch) | 1.6         | 2.3      |             |     |
| 延时电阻(*6) | Rdelay           | VIN=6.0V, Cd=0V               | 1.6         | 2.0      | 2.4         | ΜΩ  |
| 温度特性     | △VDF/<br>△Ta*VDF | Ta=-40°C ~150°C               |             | 200      |             | ppm |
| 延时管脚电流   | ICD              | Cd=0.5V, VIN=0.7V             | 8           | 60       |             | μΑ  |
| 延时管脚电压   | VTCD             | VIN=1.0V                      | 0.4         | 0.5      | 0.6         | V   |
|          |                  | VIN=6.0V                      | 2.9         | 3.0      | 3.1         | V   |

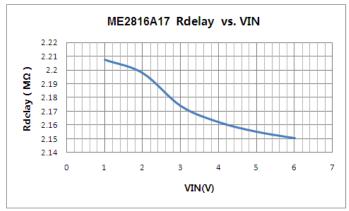
注: \*1:VDF(T)设置检测电压

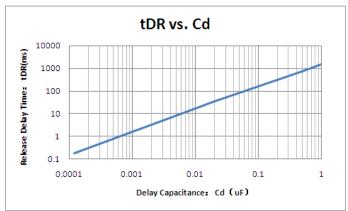
\*2: VDF(T)>1V

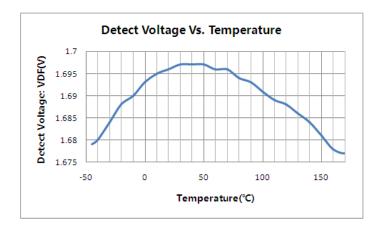
\*3: VDF(T)>2V

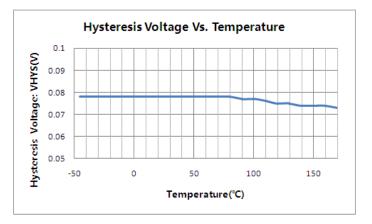

\*4: VDF(T)>3V


\*5: VDF(T)>4V


\*6:通过电阻两端的电压及电流计算得出



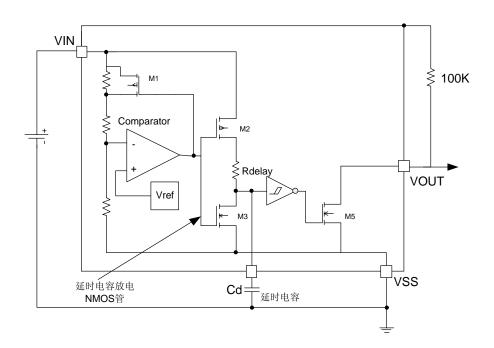


## 典型参数曲线图

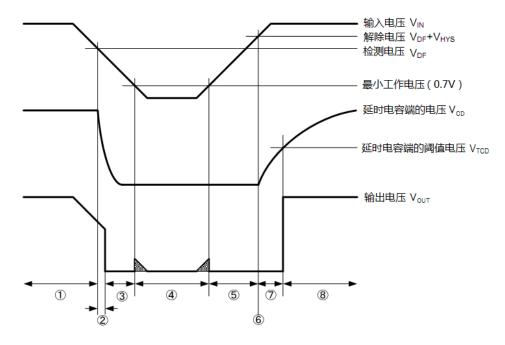











### 原理描述

典型应用电路示例及延时时间表如下:





- ① 早期状态,提供的 VIN 输入电压引脚高于解除电压,及 Cd 端的电容被充电至端电压等于输入电压 VIN,当 VIN 输入端电压开始下降接近检测电压(VDF)(VIN>VDF),输出电压 VOUT 一直保持"高"状态(=VIN)
- ② 当 VIN 输入电压不断下降与检测电压相等(VIN=VDF)时,延时电容放电 N 沟道晶体管开启,Cd 端延时电容开始放电,输出电压翻到低状态(≦ VIN×0.1),检测延时时间(tDF)定义为从 VIN=VDF 开始到 VOUT 翻到"低"状态(=VSS)为止(注:当 Cd 端无连接时为: tDF0))
- ③ 当输入电压 VIN 继续低于检测电压,且高于 0.7V,延时电容端放电至地电位(=VSS)),输出电压 (VOUT)保持"低"状态(=VSS)

V02 www.microne.com.cn Page 6 of 11



- ④ 当输入电压下降到小于 0.7V,或又增加到 0.7V 多更高,输出电压 VOUT 可能不会保持低状态 VSS, 称这种工作状态为"不定态",这时的输出电压被定义为不定态电压(VUNS)
- ⑤ 当输入电压增加至大于 0.7V,且未达到解除电压时(VIN<VDF +VHYS),输出电压(VOUT)保持为"低" 状态(=VSS)
- ⑥ 当输入电压大于 0.7V 以上继续增大至解除电压(=VDF + VHYS),延时电容的放电 N 沟道 MOS 管关闭,电源电压 VIN 经过一个延时电阻(RDELAY)开始给延时电容充电。
  - 当输入电压大于检测电压时(VIN > VDF), Cd 端作为内部迟滞比较器电路的输入电压, (其上升沿比较翻转阈值为 VTLH=VTCD, 下降阈值为 VTHL=VSS)
- ⑦ 当输入电压与解除电压相等或者高于且保持大于等于解除电压,延时电容(Cd)被充电至 VIN 电源电压,当延时电容端电压(VCD)达到此端的阈值电压值(VTCD)时,输出电压翻转至"高"(=VIN)状态,定义 tDR 时间为:从电源电压 VIN =VDF+VHYS 开始到输出电压为"高"状态为止(注:Cd没有连接时为 tDR0)

解除延时时间 tDR 可通过以下公式(1)得到:

tDR = RDelay×Cd×In (1-VTCD / VIN) +tDR0 ...(1)

由于延时电阻 RDelay 为 2.0M $\Omega$ (TYP.)及延时电容端阈值电压 VTCD 为 VIN /2 (TYP.),解除延时间也可以简化为公式(2)

tDR=RDelay×Cd×0.69 ...(2)

例如: 假设延时电容为 0.68μF, tDR is =2.0×106×0.68×10-6×0.69=938(ms)

- \*注 由于③描述时间比较短, 当延时电容没有完全放电到低(=VSS)状态时, 解除延时时间可能会明显短
- ⑧ 当输入电压高于检测电压(VIN > VDF),此时输出电压保持"高"(=VIN)状态。

#### ● 解除延时时间表

| 延时端电容[Cd]<br>(uF) | 解除延时时间[Cd](TYP)<br>(ms) | 解除延时时间[Cd](MIN.~MAX.)*1<br>(ms) |
|-------------------|-------------------------|---------------------------------|
| 0.01              | 13.8                    | 11.0~16.6                       |
| 0.022             | 30.4                    | 24.3~36.4                       |
| 0.047             | 64.9                    | 51.9~77.8                       |
| 0.1               | 138                     | 110~166                         |
| 0.22              | 304                     | 243~364                         |
| 0.47              | 649                     | 519~778                         |
| 1.0               | 1380                    | 1100~1660                       |

注: \*1 解除时间通过公式(2)计算得到 延时端电容(Cd)影响解除延时时间

V02 www.microne.com.cn Page 7 of 11



#### 应用信息

- 1. 请在各参数极限值内使用此 IC, 短暂电压下降或电压上升情况, IC 可能出现故障。
- 2. 工作状态时,如果供电电源与 VIN 管脚端之间连接有电阻,此电阻有电流流过,IC 输入管脚的电压会下降, 此时,如果输入管脚电压下降到最小工作电压以下,工作状态可能会发生错误, CMOS 输出形式,同样输出电流会影响输入管脚电压,此时会引起振荡,特别注意 此 IC 使用时 VIN 管脚连接电阻。
- 3. 注意快速的瞬态尖峰输入电压会引起错误的工作状态
- 4. 供电电源的噪声会引起工作状态的错误,注意要在 VIN 与 GND 之间外部连接有电容
- 5. 若输入引脚电压 VIN 有迅速下降的可能(例如: 6.0v 到 0V),在解除延时应用中,延时端连接有延时电容,请使用肖特基势垒二极管连接在 VIN 引脚和 Cd 引脚之间,如图 3 所示。
- 6. 当 ME2816N 沟道开漏输出使用,在电压检测和解除状态时,输出电压 VOUT 是由一个上拉电阻连接在 VOUT 引脚决定的。上拉电阻的电阻值可以选择参照以下。(参见图 4) 在检测状态时,计算公式如下:

#### VOUT=VPULL/(1+RPULL/RON)

VPULL 是上拉电压,RON(\*1)是 N 沟晶体管 M5 开启时的导通电阻(RON=VDS/IOUT1 电气参数表中得出) 例如: 当 VIN=2.0V, RON = 0.5/0.8×10-3=625 $\Omega$ (MIN.) 当上拉电压 VPULL=3.0V 时,如果想得到 VOUT 小于 0.1V RPULL 可通过如下公式计算得出;

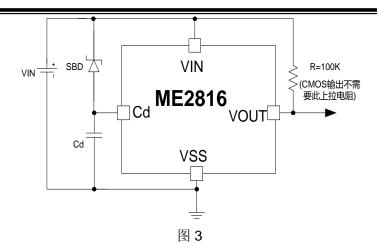
#### RPULL=(VPULL /VOUT-1) $\times$ RON=(3/0.1-1) $\times$ 625 $\stackrel{.}{=}$ 18 k $\Omega$

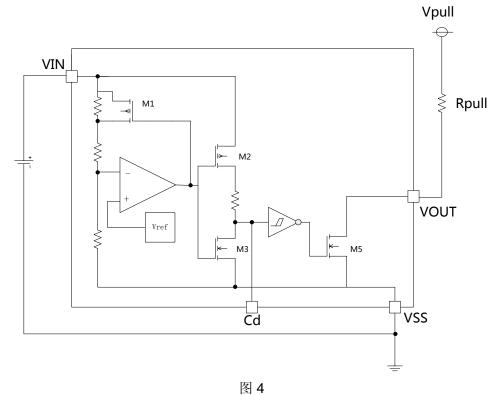
因此 上拉电阻应该选择大于等于 18kΩ

(\*1) VIN 越小 RON 越大

在解除状态时, 计算公式如下

#### VOUT=VPULL/(1+RPULL/ROFF)

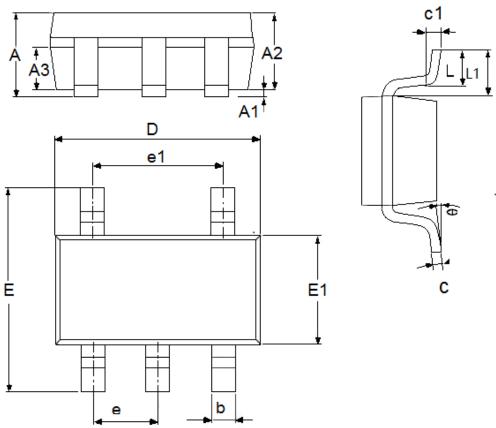

VPULL 是上拉电压 ROFF 是 N 沟晶体管 M5 关断时的电阻(ROFF=VOUT/ILEAK=15MΩ 电气参数表中得出) 例如,如果在上拉电阻为 6.0V 时,想得到输出电压大于 5.99V,上拉电阻可以计算出:


RPULL=(VPULL/VOUT-1)×ROFF=(6/5.99-1)×15×106  $\stackrel{.}{=}$  25k $\Omega$ 

因此 上拉电阻应该选择大于等于 25kΩ

V02 www.microne.com.cn Page 8 of 11










# 封装信息

### ● 封装形式: SOT23-5



| 尺寸(    |           | m) 尺寸 (Inch) |             | Inch)  |
|--------|-----------|--------------|-------------|--------|
| 参数 ——— | 最小值       | 最大值          | 最小值         | 最大值    |
| Α      | 1.05      | 1.45         | 0.0413      | 0.0571 |
| A1     | 0         | 0.15         | 0.0000      | 0.0059 |
| A2     | 0.9       | 1.3          | 0.0354      | 0.0512 |
| A3     | 0.6       | 0.7          | 0.0236      | 0.0276 |
| b      | 0.25      | 0.5          | 0.0098      | 0.0197 |
| С      | 0.1       | 0.23         | 0.0039      | 0.0091 |
| D      | 2.82      | 3.05         | 0.1110      | 0.1201 |
| e1     | 1.9(TYP)  |              | 0.0748(TYP) |        |
| Е      | 2.6       | 3.05         | 0.1024      | 0.1201 |
| E1     | 1.5       | 1.75         | 0.0512      | 0.0689 |
| е      | 0.95(TYP) |              | 0.0374(TYP) |        |
| L      | 0.3       | 0.6          | 0.0118      | 0.0236 |
| L1     | 0.59(TYP) |              | 0.0232      | (TYP)  |
| θ      | 0         | 8°           | 0.0000      | 8°     |
| c1     | 0.2(TYP)  |              | 0.0079(TYP) |        |



- 本资料内容,随产品的改进,会进行相应更新,恕不另行通知。使用本资料前请咨询我司销售人员,以保证本资料内容为最新版本。
- 本资料所记载的应用电路示例仅用作表示产品的代表性用途,并非是保证批量生产的设计。
- 请在本资料所记载的极限范围内使用本产品,因使用不当造成的损失,我司不承担其责任。
- 本资料所记载的产品,未经本公司书面许可,不得用于会对人体产生影响的器械或装置,包括但不限于:健康器械、医疗器械、防灾器械、燃料控制器械、车辆器械、航空器械及车载器械等。
- 尽管本公司一向致力于提高产品质量与可靠性,但是半导体产品本身有一定的概率发生故障或错误工作,为防止因此类事故而造成的人身伤害或财产损失,请在使用过程中充分留心备用设计、防火设计、防止错误动作设计等安全设计。
- 将本产品或者本资料出口海外时,应当遵守适用的进出口管制法律法规。
- 未经本公司许可,严禁以任何形式复制或转载本资料的部分或全部内容。